EEG-based communication and control: speed-accuracy relationships.
نویسندگان
چکیده
People can learn to control mu (8-12 Hz) or beta (18-25 Hz) rhythm amplitude in the EEG recorded over sensorimotor cortex and use it to move a cursor to a target on a video screen. In our current EEG-based brain-computer interface (BCI) system, cursor movement is a linear function of mu or beta rhythm amplitude. In order to maximize the participant's control over the direction of cursor movement, the intercept in this equation is kept equal to the mean amplitude of recent performance. Selection of the optimal slope, or gain, which determines the magnitude of the individual cursor movements, is a more difficult problem. This study examined the relationship between gain and accuracy in a 1-dimensional EEG-based cursor movement task in which individuals select among 2 or more choices by holding the cursor at the desired choice for a fixed period of time (i.e., the dwell time). With 4 targets arranged in a vertical column on the screen, large gains favored the end targets whereas smaller gains favored the central targets. In addition, manipulating gain and dwell time within participants produces results that are in agreement with simulations based on a simple theoretical model of performance. Optimal performance occurs when correct selection of targets is uniform across position. Thus, it is desirable to remove any trend in the function relating accuracy to target position. We evaluated a controller that is designed to minimize the linear and quadratic trends in the accuracy with which participants hit the 4 targets. These results indicate that gain should be adjusted to the individual participants, and suggest that continual online gain adaptation could increase the speed and accuracy of EEG-based cursor control.
منابع مشابه
EEG Based Brain Computer Interface Hand Grasp Control: Feature Extraction Method MTCSP
Brain-Computer Interfaces (BCIs) are communication systems, which enable users to send commands to computers by using brain activity only; this activity being generally measured by Electroencephalography (EEG). BCIs are generally designed according to a pattern recognition approach, i.e., by extracting features from EEG signals, and by using a classifier to identify the user’s mental state from...
متن کاملEEG Based Brain Computer Interface Hand Grasp Control: Feature Extraction Method MTCSP
Brain-Computer Interfaces (BCIs) are communication systems, which enable users to send commands to computers by using brain activity only; this activity being generally measured by Electroencephalography (EEG). BCIs are generally designed according to a pattern recognition approach, i.e., by extracting features from EEG signals, and by using a classifier to identify the user’s mental state from...
متن کاملA high-speed brain-computer interface (BCI) using dry EEG electrodes
Recently, brain-computer interfaces (BCIs) based on visual evoked potentials (VEPs) have been shown to achieve remarkable communication speeds. As they use electroencephalography (EEG) as non-invasive method for recording neural signals, the application of gel-based EEG is time-consuming and cumbersome. In order to achieve a more user-friendly system, this work explores the usability of dry EEG...
متن کاملEEG Artifact Removal System for Depression Using a Hybrid Denoising Approach
Introduction: Clinicians use several computer-aided diagnostic systems for depression to authorize their diagnosis. An electroencephalogram (EEG) may be used as an objective tool for early diagnosis of depression and controlling it from reaching a severe and permanent state. However, artifact contamination reduces the accuracy in EEG signal processing systems. Methods: This work proposes a no...
متن کاملSpatial filter selection for EEG-based communication.
Individuals can learn to control the amplitude of mu-rhythm activity in the EEG recorded over sensorimotor cortex and use it to move a cursor to a target on a video screen. The speed and accuracy of cursor movement depend on the consistency of the control signal and on the signal-to-noise ratio achieved by the spatial and temporal filtering methods that extract the activity prior to its transla...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied psychophysiology and biofeedback
دوره 28 3 شماره
صفحات -
تاریخ انتشار 2003